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Abstract. Analytical and numerical investigation is provided into the motion of a particle 
closetounstable straight-intervaly = +xorbitsinthesystem H = $ ( p : + p ~ + x 2 y ’ ) .  Physical 
interpretation is provided which involves a perturbation analysis leading to doubly periodic 
solutions for x(1) and y ( 1 ) .  Secand-order ordinary differential equations are derived to 
describe the trajectory of the particle in the x-y plane and the functional form of ~ ( 1 ) .  

1. Introduction 

The classical Hamiltonian 

H = f(p:+p: + x2y2)  (1) 

has been the subject of numerous studies (see Dahlqvist and Russberg 1990 and 
references therein). The practical importance of the problem under investigation rests 
chiefly with its relationship to the plasma confinement problem. In this regard, the 
Hamiltonian in equation (1) arises from a three-dimensional Hamilitonian for a charged 
particle of mass m in the presence of a magnetic vector potential A. The Hamiltonian 
for this case is 

H = ‘1 2m p:  + p :  + ( p z  -+) *] 
where the vector potential is taken as A =xyk, with k being a unit vector along the 

. z-axis. Our Hamiltonian of equation (1) arises by restricting the motion to the x-y 
plane when p .  = 0. The gauge used corresponds to a magnetic induction field B of the 
form 

B = xi - yj (3) 
the magnitude of B being proportional to the radius r = ( ~ ~ + y * ) ” ~ .  
h important physical application of the Hamiltonian in equation (1) is in the 

context of classical approximations to the Yang-Mills gauge field theory. A particular 
point of interest is the effect of the ground state in quantum chromodynamics (Matanyan 
et al 1981, Chirikov and Shepelyonsky 1981, Nikolaevskii and Shur 1982, Sawidy 
1983, 1984, Carnegie and Percival 1984, Chang 1984, Steeb et ol 1985, Soh? et al 
1989). It was conjectured that the system described by equation (1) is simultaneously 
globally ergodic and given by an analytical expression (Martens et al 1989). This 
Hamiltonian has also been used to test the conjecture that if a quantum system has a 
classically chaotic analogue then, in the semi-classical limit, the energy eigenfunctions 
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fill the entire accessible phase space (Feingold er al 1985). For this example to be 
appropriate all the periodic orbits must be unstable. However, very recently Dahlqvist 
and Russberg (1990) provided evidence for the existence of stable periodic orbits and 
disproved this claim. This one-parameter family of stable orbits occupies an area of 
0.005% on the surface of the section and this explains why it was so difficult to find 
it. Furthermore a recent communication by Biswas et a/ (1992) has claimed the presence 
of another stable family of periodic orbits and these two discoveries tend to rule out 
ergodicity in this class of*Hamiltonian systems. Assuming for simplicity that x(0) = 
y(0) =0, we believe we have found a periodic orbit, shown in figure 1 for illustrative 
purposes, which very closely resembles the one discussed by Dahlqvist and Russherg 
(1990). Although this may only be a numerical inaccuracy our computations tend to 
indicate that over several periods of time this orbit appears to become open. The 
objective of the present paper, however, is not to discuss the stability of this or other 
periodic orbits, but rather the behaviour of particle motion close to the unstable 
straight-line trajectories y = *x. This is in order to gain some insight into particle 
motion close to instabilities. In particular, we shall investigate whether a combination 
of analytical and numerical methods can explain the observed distortion of straight-line 
trajectories into periodic or quasi-periodic orbits. 

M L A  Nip et a1 

X 

Figure 1. A plot of y versus x for the periodic orbit wrrespondins to ~0 = -0.800 54 and 
E =0.5. 

2. They = TX oribits and their neighbourhood 

In this paper we point out the importance of two straight-interval orbits y = F x  which 
yield analytical solutions to the equations of motion 

(4) = -xy 2 y = - y x .  2 

These solutions are given by 

~ ( t )  = (213)”~  cn[ (2~)”~r ,  1 / d ]  
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where E is the total energy and cn is a Jacobi elliptic function (Byrd and Friedman 
1971) whose modulus is k = I /& Thus, its amplitude scales with and its period 
T is 

T =4K(1/4)/(2E)"' (6)  

where K denotes the complete elliptic integral of the first kind. In this case K(l/v% = 
1.854 075 (Byrd and Friedman 1971). These orbits appear to be unstable with respect 
to the initial conditions but, as shown in figures 2(a-c), under small perturbation of 
the initial conditions they can he transformed into what appear to be quasi-periodic 
orbits. Changing the initial conditions (x,, = x(t) at f = 0) by an infinitesimally small 
amount, either above or below x, = - 1, results in a new solution which initially follows 
a straight-line trajectory fairly closely and then, for the value of y close to zero, departs 
from it, changing the direction of propagation to along the y-axis or along the x-axis 
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Figure 2. TrajectotOries in the x-y plane for E = O S  
and(n) x o ~ - I . Z ,  ( b ) x o = - l . O ,  (c)xo--0.8. 

- 
panels ( 0 )  and (b ) ,  respectively. 
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depending on initial conditions. This behaviour can be readily understood in terms of 
the potential function illustrated in figure 4(a), and especially from the contour plot 
in figure 4(b) which shows that the two axes point in the direction of the potential's 
troughs. The original straight-line trajectories represent unstable solutions traversing 
the locus of points representing local potential energy maxima. An infinitesimally small 
perturbation will have a tendency to cause the trajectory to deviate from its straight-line 
path and seek the most energetically favourable course. This obviously means a 
redireciion of ihe moiion aiong either the x or y axes, where the potentiai energy is 
lowest and the walls surrounding it are steepest and become closer together with 
increasing x or y, respectively. Furthermore, it can be seen that, apart from the initial 
and final points of a quasi-periodic orbit, the particle's trajectory never makes contact 
with the constant potential energy hyperbolae. This is due to the fact that initially the 
kinetic energy is assumed to be zero (i.e. x(0) = j(0) = 0) and, as energy is conserved, 
only classical tuming points will have the same potential energy as the initial point. 

Obviously, assuming a different set of initial conditions especially with a non-zero 
kinetic energy will affect the final result. In particular, the direction of propagation 
will depend directly on the values of i (0)  and y(0) since the initial angle of entry is 
given by  tan 0 = ( p y / p x ) I , = o .  However, the straight-line y = +X orbits can be recovered 
by putting xo= +yo and x(0) = +j(O). 

Note that there is another pair of straight-line trajectories which represent trivial 
solutions to equation (4), i.e. 

M L A Nip et a1 

x = o  y=Fm 

y = o  i = W E .  
(7) 

The two sets of straight-line orbits described by equations (7) and equation (5) represent 
two opposite extremes in the allowed behaviour of the particle with the Hamiltonian 
in equation (1). The unstable orbits given by equation (5) correspond to the most 
spatially confined motion whereas the orbits in equation (7) exhibits a completely 
delocalized behaviour with the particle moving at a constant velocity along the two 
troughs, where, of course, there is no force acting on the particle. 

Potential , 

Flgurc 4. Plots of ( a )  the potential energy V(*, y )  = x'y' and ( b )  constant potential energy 
sections. 
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Plotting x versus t (or y versus 1 )  provides another insight into how the unstable 
straight-line trajectories evolve under an infinitesimal perturbation. In figures 5(a-e) ,  
a comparison is made of the initial conditions xo= -1.2, -1.0 and -0.8, respectively. 
These correspond to the unstable straight-line orhit and its two quasi-periodic neigh- 
hours, one on each side. We see the emergence of a second period for both x and y 
as we move away from xo = -1.0. For lack of space only x( t) plots are shown. However, 
we can obtain y ( f )  plots from the x ( t )  plots by changing x to - y  and similarly for 
the ciyjrjidr versus r piots compared with dx(t)/df plots in figures 6(o-e). Finally, 
in this regard, the phase portrait in figures 7 ( a - c )  illustrates, for dx/dr versus x, how 
the initial unstable orbit characterized by 

for x,=-1, becomes gradully distorted and modified for xo= -0.8 with step-like 
plateaux related to the development of a new periodicity. Equation (8) follows from 

(8) i z  = E - i X 4  
2 

I , , ,  , I 1 1  
1, ::),U,, , , ,U,, , , y -0.8 

t t 

Figure 5. Plots of x versus t for E = 0.5 and (a) xo = 
-1.2, ( b )  xo=-l.O, ( E )  xo=-0.8.  

Figure 6. Plots of dxJd1 versus I for E = 0.5 and 
(a) xo=-1.2, ( b )  xo=-l.O, ( c )  xo=-0.8. 
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the conservation of energy condition applied to the y = Tx orihits. The other case, 
xo= -1.2, exhibits a different behaviour where the trajectory appears to be approaching 
an ellipse with its major axis rotated through 90" from the major axis in figure 6(b) 
for x,=-1. 

It is perhaps of interest to provide approximate analytical forms for the beginning 
and ending portion of the quasi-periodic orbit in figure 1 so that once initial conditions 
are given the direction of launch or retum direction is specified. For the orbit in figure 
1 we have fitted straight lines to the initial and final parts of the trajectory for the 
range of x, +1.8>x> -1. For the upper straight section the best fit is given by 

(9) 
whilst the lower section is best fitted by 

(10) 
inis is iiiusiraied graphicaiiy in figures 3iaj and j i b j  for equations (9j and (ioj, 
respectively. 
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Flgure 7. Surface of section Plots in terms of dxldr 
as a function of x for E =O.S and ( a )  x,= -1.2, -1 0 1 2 

X ( b )  &=-l,O, (e)  xo=-0.8. 
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The computations described above were performed using a second-order Runge- 
Kutta method applied to the system of coupled equations in equation (4) on a given 
manifold of constant energy (in our case E = O S  was chosen) using the step size of 
h = 0.005. We have also used a fourth-order approach to check our calculations and 
the results remain the same. Each plot was constructed using approximately at least 
400 points. 

3. Perturbation calculations 

An additional support for the numerical results of section 2 can be gained by perturbing 
the system of equations (4) with respect to the elliptic solution x ( t )  in equation ( 5 )  
and its counterpart y = TX.  We seek solutions in the form 

X ( t )  = x ( t ) +  U ( t )  and Y ( t ) = y ( t ) + u ( t )  (11) 
where U and U are assumed to be small perturbations. We then obtain the coupled 
linear eigenvalue equations 

for the case x = + y  and 

“(”=.’( -1 +2 )( U ) 
df’ U +2 -1 U 

when x = -y.  Both cases can be readily diagonalized with the eigenfunctions 

1 
@ - - ( u + u )  ‘-4 and 

1 
@ - - ( U - U ) .  ’-4 

The corresponding eigenvalues are, respectively, 

A,=-3  and A , = + l  for x = + y  

A , = + l  and A 2 = - 3  for x = -y. 
(15) 

With x ( f )  given by the elliptic function in equation ( 5 )  and the property (Byrd and 
Friedman 1971) that 

sn2(at, k)+cn2(at, k ) = l  (16) 
we can solve the problem completely with the aid of a monograph on special functions 
(Whittaker and Watson 1963). Substituting x ( t )  from equation (5 )  into equations (12) 
and (13), after they have been diagonalized, results in a Lam6 equation for the 
eigenfunctions, 4,  and @’, of equation (11). Whenever these eigenfunctions correspond 
to positive eigenvalues the solutions take the form of scattered waves. However, a 
much more interesting set of solutions can be obtained for negative eigenvalues. The 
relevant Lam6 equation takes the form 

d2@ -= { n ( n  + l )k2 sn’(7, k)+ A}@ 
dr’ 

where the scaled time variable is T = t (2E)”‘  and n = 1 for the eigenvalues of A = +1 
while n = 2 for those with A = -3. Note that k2 = f  and A = +1 and A = -3, respectively, 
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for the two cases above. The explicit analytical solutions take the form (Whittaker and 
Watson 1963) 

M L A Nip et al 

where 0 and Z are the Riemann theta and zeta functions, respectively, while H is 
Jacobi's eta function. The constant values T~ satisfy a specific set of equations which 
can be deduced from the original source. Note also that, for our case for A = +1 only 
one term is present in the product in equation (18) (n = 1) while the other case is the 
product of only two factors. Thus, the cases under consideration are the two simplest 
possibilities for the Lam6 eigenvalue problem. The functions '(7) can be doubly 
periodic which would physically imply a periodic envelope with intemal oscillations 
around the centres of the potential minima in equation (17). Having solved the problem 
for the 'diagonaiized' eigenfunctions 4, we can now revert back io the originai 
eigenfunctions U and U which will now be composed of, in general, two contributions. 
One of these will be a scattered wave solution of the Lam6 equation (for positive 
eigenvalues) which modifies the other component that has two periods. Note that the 
minus sign appearing in equation (17) for positive eigenvalues can be absorbed in k2 
yielding an imaginary value of the Jacobi modulus. This explains the scattered wave 
nature of this type of solution. 

It is also possible to derive a second-order differential equation for y = f ( x )  which 
describes the particle's regular analytical trajectories. If primes denote differentiation 
with respect to x then clearly 

j = f ' X .  (19) 

Hence, differentiating equation (19) again with respect to time and using the equations 
of motion in equation (4), we find that 

f"(X)'-fIf'x = -fx'. (20) 

2E = ( X ) 2 + ( j ) 2 + x 2 y 2  = (X)2+ ( f ' ) 2 ( X ) 2 t ~ 2 f 2 .  (21) 

f"(2E -x2f2) = x f ( 1  + ( f ' ) 2 ) ( - x + f f ' ) .  

However, for a fixed energy E, from the first integral, we have 

Eliminating (X)2 between equations (20) and (21) then provides the equation of the 
trajectories as 

(22) 

Two solutions of equation (22) are evident, namely those corresponding to the unstable 
orbits f ( x )  = r x ,  when x (  t )  is described by the elliptic function in equation (5). It is 

*- ....&a .L-. F,.- "-."I1 ..*I..-" "f- f- nn..nt:nn 1 7 7 )  .aA,,,.na +n rrrrcrs3rrrre; L" L L U L S  L I I l l L  I", D L l l l l l l  " l l lUCI "1 J ,  *L&YOL."L. \-A, .*""--I I" 

- X 2  f"==$ 

This is a Bessel function equation with one solution of the form 

and will exhibit damped oscillatory behaviour near the axes. Consequently, we have 
found approximate expressions for the intersection points of the trajectory with the x 
and y axes represented by the zeros of the Bessel function in equation (24). 



Regular orbits in the x’y’ potential problem 5561 

4. Comments on the properties of orbits 

In the context of physical applications to the confinement problems of plasma in the 
presence of a magnetic field given by equation (3) it is of interest to explore the 
existence and properties of the farthermost points (from the origin of the coordinate 
system) on a given trajectory. Such a point, at (xF, yF), is characterized by an infinite 
or at least very large gradient, i.e. f’= dy/dx+oo, and by both velocity components 
becoming vanishingly small, i.e. x, j + 0. Using equation (22)  and neglecting the terms 
that become insignificant in the circumstances we amve at the following approximate 
equation 

( 2 E  -x$y$)f”=2(f’)’xFy: (25 )  

valid for x = xF and y = y F ,  i.e. close to the farthest point. 
A few comments are in order regarding equation (25)  and the assumptions made 

in deriving it. First, due to the 90” rotational symmetry of the Hamiltonian, if an orbit 
has f’ = m at its farthest point from the origin, then another, rotated orbit must have 
f’= 0 at this point. However, we consider here only the former case. We also exclude 
the special cases of the y = * x orbits for which f’= *1 at all times. Furthermore, the 
condition i = 0 allows two possibilities i = 0 or f’ = -x /y .  Since f ’  = dy/dx = y / t ,  
the first possibility does indeed give f’=*.m as long as y # O .  In fact, on cross- 
ing the x-axis with x # 0 we obtain j = *-. However, if x # 0, then we must have 
f’= - x / y  even if x is very small. Therefore, it is very important to determine whether 
x is exactly zero or just small. In the case when both x and 3 are negligibly small we 
obtain from energy conservation for the Hamiltonian of equation (1) that 

y F = f m / X F .  (26)  

Between the points with x = 0, y = 0 and x = xF the trajectory is nearly a straight vertical 
line, so we can approximate x = xF, x = 0 and solve the equation of motion for y = y( f). 
This gives y = y: sin(wt) with y : = m / x F  being the amplitude of vertical motion and 
o = xF its frequency. Increasing the position of xF results in decreasing the amplitude 
&. We have checked the relation given in equation (26) for our orbit in figure 1 where 

x,=3.1328 yF = 0.3 184 E = 0.5. (27) 
The result of our comparison of these numbers with equation (26) is excellent as can 
be readily verified by the reader. Obviously, corresponding orbits at higher energies 
will be characterized by end points whose coordinates will be related to those above 
for having E = O S  through a simple scaling by  a V% factor. Another comment worth 
making is that equation (26) implies no obvious limit on the magnitude of xF for a 
fixed value of energy E. This is in agreement with the straight-line orbits along the 
troughs given by equation (7). 

5. Conclusions 

In summary, we have provided an analysis of motion close to the straight-line orbits 
of the x2yz potential. The tools we have employed were both analytical and numerical. 
It was shown that quasi-periodic orbits close to the unstable straight-line orbits can 
be understood in terms of infinitesimally small perturbations applied to special types 
of analytical solutions. A particularly interesting result has been derived for the end 
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points of any low-energy orbits and we believe that it can be of practical value in 
plasma confinement studies. 

We also believe that we have demonstrated, not only a physical reason for the 
observed behaviour of the system but also an intriguing insight has been obtained into 
an analytical approach to a partially chaotic problem. 

M L A Nip et a/ 
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